2016/11/13

Plant microRNAs play a role in gene expression

Plant microRNAs play a role in gene expression


Excerpt from the abstract: "Our previous studies have demonstrated that stable microRNAs (miRNAs) in mammalian serum and plasma are actively secreted from tissues and cells and can serve as a novel class of biomarkers for diseases, and act as signaling molecules in intercellular communication. Here, we report the surprising finding that exogenous plant miRNAs are present in the sera and tissues of various animals and that these exogenous plant miRNAs are primarily acquired orally, through food intake. MIR168a is abundant in rice and is one of the most highly enriched exogenous plant miRNAs in the sera of Chinese subjects. Functional studies in vitro and in vivo demonstrated that MIR168a could bind to the human/mouse low-density lipoprotein receptor adapter protein 1 (LDLRAP1) mRNA, inhibit LDLRAP1 expression in liver, and consequently decrease LDL removal from mouse plasma. These findings demonstrate that exogenous plant miRNAs in food can regulate the expression of target genes in mammals."

Here's another example: 

http://www.greenmedinfo.com/blog/amazing-food-science-discovery-edible-plants-talk-animal-cells-promote-healing



Excerpt: "A groundbreaking new study published in Molecular Nutrition & Food Research titled, "Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles," reveals a new way that food components 'talk' to animal cells by regulating gene expression and conferring significant therapeutic effects. With the recent discovery that non-coding microRNA's in food are capable of directly altering gene expression within human physiology, this new study further concretizes the notion that the age old aphorism 'you are what you eat' is now consistent with cutting edge molecular biology.

"Our findings show that exosome-like nanoparticles are present in edible fruits and vegetables and reveal a previously unrecognized strategy by which plants communicate with mammalian cells via exosome-like nanoparticles in the gut, and in particular intestinal macrophages and stem cells. We found that edible plants contain large amounts of nanoparticles. Like mammalian exosomes, further characterization of the plant nanoparticles led to identifying them as exosome- like nanoparticles based on the nanoparticles being com- posed of proteins, lipids, and miRNAs. EPDENs from different types of plants have different biological effects on the recipient mammalian cells. This finding opens up a new avenue to further study the molecular mechanisms underlying how the plant kingdom crosstalks with mammalian cells such as intestinal macrophages and stem cells via EPDENs. This information may provide the molecular basis of using multiple plant-derived agents for better therapeutic effect than any single plant-derived agent."

Can we observe the plant miRNA induced gene expression to occur in nature? Yes, we have several examples. One of the best examples is rapid adaptation of the Italian wall lizard:

http://news.nationalgeographic.com/news/2008/04/080421-lizard-evolution_2.html

Excerpt: "Italian wall lizards introduced to a tiny island off the coast of Croatia are evolving in ways that would normally take millions of years to play out, new research shows.

In just a few decades the 5-inch-long (13-centimeter-long) lizards have developed a completely new gut structure, larger heads, and a harder bite, researchers say. In 1971, scientists transplanted five adult pairs of the reptiles from their original island home in Pod Kopiste to the tiny neighboring island of Pod Mrcaru, both in the south Adriatic Sea.

The transplanted lizards adapted to their new environment in ways that expedited their evolution physically, Irschick explained.
Pod Mrcaru, for example, had an abundance of plants for the primarily insect-eating lizards to munch on. Physically, however, the lizards were not built to digest a vegetarian diet.

Researchers found that the lizards developed cecal valves—muscles between the large and small intestine—that slowed down food digestion in fermenting chambers, which allowed their bodies to process the vegetation's cellulose into volatile fatty acids.

"They evolved an expanded gut to allow them to process these leaves," Irschick said, adding it was something that had not been documented before. "This was a brand-new structure."

Along with the ability to digest plants came the ability to bite harder, powered by a head that had grown longer and wider."

My questions: 

1. Did the lizards eat the new type of food before these observed changes and new structures occurred?
2. What kind of genetic solution makes it possible for a lizard to get a new structure after few generations? Is the genetic material already present in the lizard's genome?
3. Does the ecological adaptation need millions of years?

If you are biologically uninformed and irrational, you buy the explanations of the evolutionists about random mutations and selection. If you understand something about biology, you admit that the changes that those lizards experienced were driven by the food type the lizards ate. The nutrition also caused morphological changes, like a head that had grown longer and wider. There's also a reason for that. The lizard is able to bite harder. 


The evolutionary theory is a laughable fairytale. The lizards are intelligently designed and created by God.